Materials for the hydrogen economy: (from smart windows) to hydrogen sensors

Bernard Dam, Lars Bannenberg*, Herman Schreuders

Chemical Engineering *Radiation Science and Technology Faculty of Applied Sciences, TUD

A sustainable energy system

Hydrogen for industry, buildings, transport and power

Opportunities for Hydrogen Energy Technologies Considering the National Energy & Climate Plans (2020)

ÍUDelft

Why optical fiber hydogen sensors?

- Readout can be separated from the sensing area.
- No electric currents near the sensing area
- No presence of oxygen required
- Relatively small
- Potentially a large sensing range

Our basis: Optical changes in RE-hydride thin films

ŤUDelft

Huiberts et al., Nature 1996

Eye-readable hydrogen detector based on YH_x

ŤUDelft

Ngene et al., Advanced Functional Materials 24 (2014) 2374

Hysteresis suppression in Pd-based sensor

- Alloying reduces contrast and hysteresis
- H-content scales with optical contrast (Ln(T/T_{prep}))

Alloying reduces number of available H-sites

ACS Appl. Mater. Interfaces 2019, 11, 15489-15497

Optical fiber hydrogen sensors, beyond Pd

Pressure range comparison

HfH_x thin films are free of hysteresis once they reach fcc

C. Boelsma, et al., Hafnium, Nature Comm. 8 (2017) 15718

Large range, linear temperature dependence

Optical response Pd-capped Hf

ŤUDelft

C. Boelsma, et al., Hafnium, Nature Comm. 8 (2017) 15718

Tantalum: bcc lattice implies very fast diffusion

Pressure range comparison

Ta: room temperature hydrogen sensing

Hydrogen sensing material covering 7 orders in pressure

• No hysteresis, even at room temperature

Sensing speed improves by alloying with Pd

Optical response of a 40 nm film

LJ Bannenberg, H Schreuders, B Dam, Tantalum-Palladium: hysteresis-free optical hydrogen sensor over 7 orders of magnitude in pressure with sub-second response, Advanced Functional Materials 31 (2021) 2010483

Optical response is stable and reproducible for over at least 300 cycles.

Measuring hydrogen dissolved in oil using a Teflon coated Pd/MH-based sensor

Henry's law: $pH_2 = k_H (T) \cdot C_{H_2}$

Mak et al.: Sensors and Actuators B190 (2014) 982

PTFE and PMMA protection layers needed to prevent Pd poisoning

• PTFE shortens the response times

 PMMA provides protection against deactivation of the sensor by e.g. CO and NO₂

F. Nugroho, et al., Nature Materials 18 (2019), 489-495.

Conclusion

- Optical hydrogen sensors are an attractive way to reliably measure the hydrogen pressure.
- Ta_{1-y}Pd_y is versatile hydrogen hysteresis-free sensing material that has a sensing range of at least 7 orders of magnitude in pressure
- Ta_{1-y}Pd_y allows for sub-second response times at RT
- The Pd cap needs a protective coating to prevent poisoning in operando conditions

Reversible photo-darkening in REO_xH_{3-2x} thin films

