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A sustainable energy system
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Hydrogen for industry, buildings, transport and power 

Opportunities for Hydrogen Energy Technologies Considering the National Energy & Climate Plans (2020)



Why optical fiber hydogen sensors?
• Readout can be separated from the sensing area.

• No electric currents near the sensing area

• No presence of oxygen required

• Relatively small

• Potentially a large sensing range



Our basis: Optical changes in RE-hydride thin films
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Eye-readable hydrogen detector based on YHx
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Most simple approach:
Eye-readible hydrogen detector based on YHx

Ngene et al., Advanced Functional Materials 24 (2014) 2374

PH2 < 10-3 mbar

PH2 > 2.10-3 mbar

PH2 > 10-1 mbar

Desorbing from PH2 > 10-1 mbar 



From hysteretic detector to sensor
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Hysteresis suppression in Pd-based sensor

• Alloying reduces contrast and hysteresis

• H-content scales with optical contrast (Ln(T/Tprep))

• Alloying reduces number of available H-sites
ACS Appl. Mater. Interfaces 2019, 11, 15489−15497
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Optical fiber hydrogen sensors, beyond Pd



Pressure range comparison

Pd70Au30Hx 
@RT
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HCP + FCC

FCT

FCC

HfHx thin films are free of hysteresis once they reach fcc
Mintz, 1996

C. Boelsma, et al., Hafnium, Nature Comm. 8 (2017) 15718



Large range, linear temperature dependence

1.98~1.5

Exp. pressure limit

fcc/hcp phase boundary



Optical response Pd-capped Hf

10 s

120 oC1.10-2 –> 1.6.10-2 Pa

C. Boelsma, et al., Hafnium, Nature Comm. 8 (2017) 15718

T=25o C10-3 –> 1 Pa
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Tantalum: bcc lattice implies very fast diffusion



Pressure range comparison

Pd70Au30Hx 
@RT

HfHx
@120 oC

TaHx
@120 oC



• Hydrogen sensing material covering 7 orders in pressure

• No hysteresis, even at room temperature

Ta: room temperature hydrogen sensing



Sensing speed improves by alloying with Pd

Optical response of a 40 nm film

LJ Bannenberg, H Schreuders, B Dam, Tantalum-Palladium: hysteresis-free optical hydrogen sensor over 7
orders of magnitude in pressure with sub-second response, Advanced Functional Materials 31 (2021) 2010483



Optical response is stable and reproducible for over at least 300 cycles.

Stability Ta88Pd12

T = 28°C

T = 28°C

4,000 Pa1 Pa 1 Pa
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Ta0.88Pd0.12 – Pd0.60Au0.35Cu0.05 + PTFE

Ta1-yPdy

Ti

Pd0.6Au0.35Cu0.0510 nm

4 nm
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Measuring hydrogen dissolved in oil using a Teflon 
coated Pd/MH-based sensor

Mak et al.: Sensors and Actuators B190 (2014) 982

Henry’s law: pH2 = kH (T) · CH2

10 mbar hydrogen in argon/ 200 mbar oxygen in argon  



PTFE and PMMA protection layers needed to prevent Pd poisoning

F. Nugroho, et al., Nature Materials 18 (2019), 489-495.

• PTFE shortens the response times

• PMMA provides protection against deactivation 
of the sensor by e.g. CO and NO2

0 to 40 mbar H2



Conclusion
• Optical hydrogen sensors are an attractive way to 

reliably measure the hydrogen pressure.

• Ta1-yPdy is versatile hydrogen hysteresis-free sensing 
material that has a sensing range of at least 7 orders 
of magnitude in pressure 

• Ta1-yPdy allows for sub-second response times at RT

• The Pd cap needs a protective coating to prevent 
poisoning in operando conditions
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Reversible photo-darkening in REOxH3-2x thin films

1000 nm YHO film
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