

Spatial risk analysis of out-of-hospital cardiac arrests

Robin Buter¹ • Hans van Schuppen³ • Erik Koffijberg² • Erwin Hans¹ • Remy Stieglis³ • Derya Demirtas¹

¹CHOIR, University of Twente ²HTSR, University of Twente ³ARREST, Amsterdam UMC

Background

- Improving survival from out-of-hospital cardiac arrest (OHCA) is an important public health challenge.
- Survival chances increase drastically with quick resuscitation.
- Dispatch apps send volunteers to perform CPR or to fetch an automated external defibrillator (AED).
- To improve defibrillation by volunteers, AEDs must be available nearby.
- To place them effectively (using OR methods), we need to understand where and when OHCAs occur.

Objective

 To develop models to analyze spatial and spatiotemporal OHCA incidence, and to identify areas of high risk.

Data

- Amsterdam Resuscitation Studies (ARREST)
- Amsterdam, the Netherlands, 2006-2016, n = 2901

Methods

- We used kernel density estimation (KDE), which is a statistical smoothing method.
- Smoothing is controlled by a bandwidth parameter.

(1) Spatial distribution

- 2D KDE (X, Y): Gaussian kernels
- Bandwidth: bootstrapped Mean
 Integrated Squared Error

(2) Spatiotemporal distribution

- Time dimension is circular (00:00-24:00)
- Von Mises kernel is a Gaussian on a circle, $\theta \in [-\pi, \pi]$
- 3D KDE (X, Y, Θ): Model (1) + Von Mises kernel for time
- Temporal bandwidth: trigonometric moments method¹

(3) Spatial relative risk

- Ratio of spatial KDEs of non-survivors & survivors
 - 1 Taylor CC. Automatic bandwidth selection for circular density estimation. Computational Statistics & Data Analysis. 2008

Results

(1) Spatial distribution of OHCA incidence

(2) Spatiotemporal OHCA distribution

(3) Spatial relative risk

Risk area	n	Survival	CPR	AED	Median AED connection time (IQR)
High (+)	562	9%	66%	48%	9:17 (7:10-11:53)
Neutral	1907	20%	69%	47%	9:02 (7:00-11:45)
Low (-)	432	36%	78%	52%	7:41 (5:54-10:06)

- → Survival is significantly lower in the identified high risk areas.
- → OHCAs in high risk areas receive CPR less often compared to those in low risk areas.
- → Median AED (or EMS) connection time is more than 1½ minutes longer in the high risk areas than in the low risk areas.

Conclusions

- KDE can help visualize OHCA risk and identify areas of interest.
- Spatial and spatiotemporal models can be used as input to optimization models.
- Engagement with local stakeholders and public health experts is crucial in further understanding disparities between areas.

