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Introduction Table 2. Pearson correlation coefficient r, Figure 3. Heatmap of the analyzed dataset. bc_1-

relative p-value, and correct predictions (%) bc_12 correspond to the bitecounter algorithms.

Facial keypoints (Fig.1) can localize between each algorithm and the manual

and track points in the human face, ESHESEEES annotation.
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nWAGENINGEN Figure 4. A) Regression plot between manual annotation (x) and bitecounterl (y). B) Scatterplot

count a bite if the mouth ratio is
higher than a set threshold. 12
algorithm variations (bitecounters
1-12) were tested for accuracy in

between manual annotation (x) and bitecounterl (y) with meals in color code. C) Percentage (x) of
overpredicted (positive) and underpredicted (negative) bites for every meal (y) analyzed by
bitecounter 1. For example, an underprediction of 20% corresponds to 80 bites predicted in a meal
where 100 were observed. A percentage of O corresponds to a correct prediction.

_ Figure 1. The 468 facial keypoints (white)
170 meal videos from 15 are applied on a face. The lips contour (pink)

participants. Manual annotation of and their distance (light blue) are
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Discussion
Bitecounter 9 30% increase from mouth ratio in the e i i
first video frame Traditional programming is not accurate enough to replace the manual
Total bites Bitecounter 10  40% increase from mouth ratio in the annotation because:

Count 0
Bite

Count 1
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per meal
video

first video frame « Correct bite predictions per videos are too low (~5%)

« Although a small error in bite predictions could be acceptable, the percentage

L T — of over/underprediction is too high (£75%) especially in meals with higher
first video frame number of bites (i.e., dinner and lunch)

« The algorithms do not adapt to different faces, as shown by the differences in

Bitecounter 11 50% increase from mouth ratio in the
first video frame

Table 1. Threshold used in the algorithms. o
Using a gaze estimator, threshold were set for accuracy per participant

the gaze direction (left, right, up, down, : - - - , , .
Figure 2. Flowchart of the bitecounter algorithm  forward) for bitecounter2-8. Machine learning models are required to increase accuracy in bite predictions
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