
Department of Industrial Engineering and Innovation Sciences, Information Systems Group

Laura Genga

Lecture 2a – Conceptual model: main elements

Business Process Simulation

Overview on lecture modules

a) Conceptual model: main elements
b) Simple queuing system: process and information model
c) Simple queuing system: transition specifications
d) How does simulation work?
e) Petrol station example and manual simulation
f) Additional examples

1

Overview of today’s lecture

Recap: Step 1 and step 2
Step 3: Conceptual model
Manual simulation

Recap Simulation Methodology (7 steps)

STEP 1: Project definition

STEP 2: Design the simulation study

STEP 4: Executable model and verification

STEP 6: Experiments and output analysis

STEP 3: Conceptual model

STEP 5: Validation

STEP 3: Conceptual model

STEP 6: Conclusion

Recap Simulation Methodology

STEP 1: Project Definition
1.1 Decision frame

1.2 Research questions

1.3 Scope and level of detail

STEP 2: Design the study (black box & assumptions)
2.1 Black box representation

2.2 Assumptions and givens

2.3 Simulation suitable / needed?

2.4 Number of models

EXAMPLE: The Petrol Station

The owner of the petrol station has the feeling that
some potential clients are leaving the station because
there is no place to wait for service

PUMP
Max 3 cars
FIFO

Petrol station
Car arrivals :
expo(4)

Service times:
uniform(1,6)

The Petrol Station – STEP 1 Decision Frame

…the feeling that some potential customers
are leaving the station because there
is no place to wait for service Less customers

driving on

 size of queue area

 % of customers driving on

Objective

Performance
Indicator

Decision
Variable

The Petrol Station – STEP 2 Black box
representation

PETROL STATION
Decision
variables

• Size of the queue area

Output
variables

• percentage not served
• (mean waiting time)
• (number not served)

Environmental Variables
• interarrival time of cars
• service time of cars

Simulation Methodology (7 steps)

STEP 1: Project definition

STEP 2: Design the simulation study

STEP 4: Executable model and verification

STEP 6: Experiments and output analysis

STEP 3: Conceptual model

STEP 5: Validation

STEP 7: Conclusion

• model process, objects, and logic
• independent of simulation tool used

Conceptual model

Define behaviour of simulation model

Tool independent model

Understandable

Unambiguous

Conceptual model

Elements
• Process model

• Information model

• Specifications with logical language
• Initial state
• Transition specifications
• Measurement functions

Conceptual model

Process model to specify the behavior

Conceptual model

Process model to specify the behavior

Waiting patient

start stop

Free employee

Busy employee

Served patient

Conceptual model

Process model to specify the behavior
Class diagram to specify the information

Patient

name
bsn
ins

Employee

name

p1:Patient

name = Mike
bsn = 100690658
ins = VGZ

Conceptual model

Process model to specify the behavior
Class diagram to specify the information

Statements in logical language to specify
• Initial state of the system
• Transition specifications
• Measurement functions

Conceptual model

waiting

start stop

free

busy

served

PATIENT

EMPLOYEE

p1:Patient

name = Mike
bsn = 100690658
ins = VGZ

Logic to specify: initial state

p1: Patient
p1.place =
waiting
…

f: Employee
f.place =
free
…

p2: Patient
p2.place =
waiting
…

EMPLOYEExPATIENT

Specifying the initial state

p1:Patient

name = Mike
bsn = 100690658
ins = VGZ
place=waiting

p1: Patient ∧
p1.name = Mike ∧
p1.bsn = 100690658 ∧
p1.ins = VGZ ∧
p1.place = waiting

Alternative 1 Alternative 2

Conceptual model

17

waiting

start stop

free

busy

served

PATIENT

EMPLOYEE

EMPLOYEExPATIENT

p

e

(e,p)
PATIENT

Logic to specify operations (transitions)

Start
Pre: p ∈ waiting
Post: waiting := ~(waiting) – {p}

free := ~(free) - {e}
busy := ~(busy) ∪ {(e,p)}

Conceptual model

18

waiting

start stop

free

busy

served

PATIENT

EMPLOYEE

EMPLOYEExPATIENT

p

e

(e,p)
PATIENT

Logic to specify measurement functions

NrServed = served.Length;
AverageTPT = Sum(p.throughputtime: p ∈ Served) / NrServed

Conceptual model

Process model to specify the behavior
Class diagram to specify the information
Logic to specify:
• Initial state
• Operations
• Measurement functions

waiting

start stop

free

busy

served

PATIENT

EMPLOYEE

EMPLOYEExPATIENT

p

e

(e,p) (e,p)

e

p

PATIENT

Conceptual model

Patient

name
bsn
ins

Employee

name

waiting

start stop

free

busy

served

PATIENT

EMPLOYEE

EMPLOYEExPATIENT

p

e

(e,p)
PATIENT

p1:Patient

name = Mike
bsn = 100690658
ins = VGZ
place = waiting

Initialisation
p1: Patient ∧
p1.name = Mike ∧
p1.bsn = 100690658 ∧
p1.ins = VGZ ∧
p1.place = waiting

f: Employee
f.Place = free

…
Start
Pre: p ∈ waiting
Post: waiting := ~(waiting) – {p}

free :=~(free) - {e}
busy :=~(busy) ∪ {(e,p)}

NrServed = served.Length;
AverageTPT = Sum(p.throughputtime: p ∈ Served) /

NrServed

Department of Industrial Engineering and Innovation Sciences, Information Systems Group

Laura Genga

Lecture 2b – Simple queuing system : process and information model

Business Process Simulation

Overview on lecture modules

a) Conceptual model: main elements
b) Simple queuing system: process and information model
c) Simple queuing system: transition specifications
d) How does simulation work?
e) Petrol station example and manual simulation
f) Additional examples

22

Simple queueing system

Client c1
Arrival time = 0.8

Service time:
c1 = 1.6
c2 = 1.4
c3 = 2.0
c4 = 1.1

…
Client c2

Arrival time = 2.6

Client c3
Arrival time = 3.1

Client c4
Arrival time = 5.2

(M/M/1 queue) Expo(2.0) Expo(1.5)

Simple queueing system

Specify behavior

cc c (c,s)(c,s)c

s

s

End
Serve

Start
ServeArrive Served

Client

New
Client

Client

Free

Server

Busy

ClientServer

Wait

Client

Client c1
Arrival time = 0.8

Service
time:

c1 = 1.6
c2 = 1.4
c3 = 2.0
c4 = 1.1

…
Client c2

Arrival time = 2.6

Client c3
Arrival time = 3.1

Client c4
Arrival time = 5.2

Simple queueing system

Classical Petri Net:
• Transition fires if token available in each

input place
• Tokens are objects
• Type of token specified by type of place
• Arc labels indicate flow of tokens

Client c1
Arrival time = 0.8

Service
time:

c1 = 1.6
c2 = 1.4
c3 = 2.0
c4 = 1.1

…
Client c2

Arrival time = 2.6

Client c3
Arrival time = 3.1

Client c4
Arrival time = 5.2

cc c (c,s)(c,s)c

s

s

End
Serve

Start
ServeArrive Served

Client

New
Client

Client

Free

Server

Busy

ClientServer

Wait

Client

Simple queueing system

Specify information

• Object classes
• Attributes
• Associations

Client c1
Arrival time = 0.8

Service
time:

c1 = 1.6
c2 = 1.4
c3 = 2.0
c4 = 1.1

…
Client c2

Arrival time = 2.6

Client c3
Arrival time = 3.1

Client c4
Arrival time = 5.2

Simple queueing system

Client c1
Arrival time = 0.8

Service
time:

c1 = 1.6
c2 = 1.4
c3 = 2.0
c4 = 1.1

…
Client c2

Arrival time = 2.6

Client c3
Arrival time = 3.1

Client c4
Arrival time = 5.2

cc c (c,s)(c,s)c

s

s

End
Serve

Start
ServeArrive Served

Client

New
Client

Client

Free

Server

Busy

ClientServer

Wait

Client

Simple queueing system

Client c1
Arrival time = 0.8

Service
time:

c1 = 1.6
c2 = 1.4
c3 = 2.0
c4 = 1.1

…
Client c2

Arrival time = 2.6

Client c3
Arrival time = 3.1

Client c4
Arrival time = 5.2

Simple queueing system

Some remarks on notation:

Creating objects
c1: Client ∧ c2: Client ∧ c3: Client ∧ c4: Client
s1: Server
Creating links
c1.Server = s1
c1 ∈ s1.Client

Client c1
Arrival time = 0.8

Service
time:

c1 = 1.6
c2 = 1.4
c3 = 2.0
c4 = 1.1

…
Client c2

Arrival time = 2.6

Client c3
Arrival time = 3.1

Client c4
Arrival time = 5.2

Simple queueing system

Client c1
Arrival time = 0.8

Service
time:

c1 = 1.6
c2 = 1.4
c3 = 2.0
c4 = 1.1

…
Client c2

Arrival time = 2.6

Client c3
Arrival time = 3.1

Client c4
Arrival time = 5.2

cc c (c,s)(c,s)c

s

s

End
Serve

Start
ServeArrive Served

Client

New
Client

Client

Free

Server

Busy

ClientServer

Wait

Client

Simple queueing system

Constraints
Place
self.Length = Number(self.Token) ∧
self.First = {o ∈ self.Token:

o.ArrTimeInPlace = Min { t.ArrTimeInPlace: t ∈ self.Token } } ∧
self.Last = {o ∈ self.Token:

o.ArrTimeInPlace = Max { t.ArrTimeInPlace: t ∈ self.Token } } .

Client c1
Arrival time = 0.8

Service
time:

c1 = 1.6
c2 = 1.4
c3 = 2.0
c4 = 1.1

…
Client c2

Arrival time = 2.6

Client c3
Arrival time = 3.1

Client c4
Arrival time = 5.2

Simple queueing system

cc c (c,s)(c,s)c

s

s

End
Serve

Start
ServeArrive Served

Client

New
Client

Client

Free

Server

Busy

ClientServer

Wait

Client

Simple queueing system

Initial state
c1: Client ∧
c1.Place = NewClient ∧
c1.ArrivalTime = 0.8 ∧
c1.ServiceTime = 1.6 ∧
c1.WaitingTime = 0.0 ∧
c2: Client ∧
…

now: Clock ∧ % now is an instance of a Clock object %
now.Time = 0 ∧
r: RandomGenerator ∧ % r is an instance of a random number generator %
r.Seed = 1; % every block is terminated with a ; %

s1: Server ∧
s1.Place = Free ∧
s1.BusyTime = 0.0 ∧

Client c1
Arrival time = 0.8

Service
time:

c1 = 1.6
c2 = 1.4
c3 = 2.0
c4 = 1.1

…
Client c2

Arrival time = 2.6

Client c3
Arrival time = 3.1

Client c4
Arrival time = 5.2

Department of Industrial Engineering and Innovation Sciences, Information Systems Group

Laura Genga

Lecture 2c – Simple queuing system : transition specifications

Business Process Simulation

Overview on lecture modules

a) Conceptual model: main elements
b) Simple queuing system: process and information model
c) Simple queuing system: transition specifications
d) How does simulation work?
e) Petrol station example and manual simulation
f) Additional examples

36

Transition specifications

Pre conditions
• Describes when a transition may fire
• Reference to any object is allowed

Post conditions
• Describes the state of the system after the transition has fired

Simple queueing system – specifications

Arrive
Pre: c ∈ New Client ∧ c.ArrivalTime = now.Time
Post:NewClient := ~(NewClient) – {c}

Wait := ~(Wait) ∪ {c}

cc c (c,s)(c,s)c

s

s

End
Serve

Start
ServeArrive Served

Client

New
Client

Client

Free

Server

Busy

ClientServer

Wait

Client

Simple queueing system – specifications

Arrive
Pre: (c ∈ New Client) ∧ c.ArrivalTime = now.Time
Post:NewClient := ~(NewClient) – {c} ∧

Wait := ~(Wait) ∪ {c}
Wait <- c

cc c (c,s)(c,s)c

s

s

End
Serve

Start
ServeArrive Served

Client

New
Client

Client

Free

Server

Busy

ClientServer

Wait

Client

Not necessary to be
mentioned all the time

May be abbreviated by: Wait
<- c

Simple queueing system – specifications

StartServe
Pre (c ∈ Wait ∧ s ∈ Free ∧) c ∈ Wait.First
Post (Wait := ~(Wait) – {c} ∧ Free := ~(Free) – {s} ∧

Busy := ~(Busy) ∪ {<c,s>})
Busy <- (c,s)
c.WaitingTime := now.Time - c.ArrivalTime ∧
s.EndTime := now.Time + c.ServiceTime ∧
s.BusyTime := ~(s.BusyTime) + c.ServiceTime;

cc c (c,s)(c,s)c

s

s

End
Serve

Start
ServeArrive Served

Client

New
Client

Client

Free

Server

Busy

ClientServer

Wait

Client

Simple queueing system – specifications

EndServe
Pre (c,s) ∈ Busy ∧ now.Time = s.EndTime
Post Served <- c ∧

Free <- s;

cc c (c,s)(c,s)c

s

s

End
Serve

Start
ServeArrive Served

Client

New
Client

Client

Free

Server

Busy

ClientServer

Wait

Client

Simple queueing system – specifications

Functions
NrServed = Served.Length;
AverageWait = Sum(c.Waitingtime: c ∈ Served) / NrServed;
Occupation = (s1.BusyTime / now.Time) * 100%;

cc c (c,s)(c,s)c

s

s

End
Serve

Start
ServeArrive Served

Client

New
Client

Client

Free

Server

Busy

ClientServer

Wait

Client

Pre- and post-condition language

Some remarks:
• Any expression that is preceded with a ~ is interpreted on the old state

(incoming token)
• Any variable that is not mentioned as left operand in a := operation,

remains unchanged;
• Random number generator will generate a new random number every

time it is evaluated in a post-condition
• Random number generator can not be evaluated in a pre-condition!

Specification language

Need for a formal (logical)
language for specifications to prevent
ambiguity in declarations
misunderstandings

Conceptual model

cc c (c,s)(c,s)c

s

s

End
Serve

Start
ServeArrive Served

Client

New
Client

Client

Free

Server

Busy

ClientServer

Wait

Client

1. Process model

2. Information model

3. Specifications

Department of Industrial Engineering and Innovation Sciences, Information Systems Group

Laura Genga

Lecture 2d – How does simulation work?

Business Process Simulation

Overview on lecture modules

a) Conceptual model: main elements
b) Simple queuing system: process and information model
c) Simple queuing system: transition specifications
d) How does simulation work?
e) Petrol station example and manual simulation
f) Additional examples

47

How does simulation work?

Client c1
Arrival time = 0.8

Service time:
c1 = 1.6
c2 = 1.4
c3 = 2.0
c4 = 1.1

…
Client c2

Arrival time = 2.6

Client c3
Arrival time = 3.1

Client c4
Arrival time = 5.2

(M/M/1 queue)

How does simulation work?

Simulation clock
Next event technique:
• select and perform the first next event
• move the simulation clock to the time of that event
• compute further next events and put them in the queue

Events and transitions

cc c (c,s)(c,s)c

s

s

End
Serve

Start
ServeArrive Served

Client

New
Client

Client

Free

Server

Busy

ClientServer

Wait

Client

Arrive
Pre: c.ArrivalTime = now.Time
Post:…

StartServe
Pre c ∈ Wait.First
Post ….

EndServe
Pre now.Time = s.EndTime
Post ….

Time line

Time line describes the events
and their order for the simple
queueing system

Client c1
Arrival time = 0.8

Service
time:

c1 = 1.6
c2 = 1.4
c3 = 2.0
c4 = 1.1

…
Client c2

Arrival time = 2.6

Client c3
Arrival time = 3.1

Client c4
Arrival time = 5.2

Time line

• Next arrival event:
• c1 at time 0.8
• c2 at time 2.6
• c3 at time 3.1
• c4 at time 5.2

• Next server event:
• -

time = 0.0

Client c1
Arrival time = 0.8

Service
time:

c1 = 1.6
c2 = 1.4
c3 = 2.0
c4 = 1.1

…
Client c2

Arrival time = 2.6

Client c3
Arrival time = 3.1

Client c4
Arrival time = 5.2

Time line

• Next arrival event:
• c2 at time 2.6
• c3 at time 3.1
• c4 at time 5.2

• Next server event:
• Start c1 at time 0.8

time = 0.8

Client c1
Arrival time = 0.8

Service
time:

c1 = 1.6
c2 = 1.4
c3 = 2.0
c4 = 1.1

…
Client c2

Arrival time = 2.6

Client c3
Arrival time = 3.1

Client c4
Arrival time = 5.2

Time line

• Next arrival event:
• c2 at time 2.6
• c3 at time 3.1
• c4 at time 5.2

• Next server event:
• end c1 at time 2.4 (= 0.8 + 1.6)

time = 0.8

Client c1
Arrival time = 0.8

Service
time:

c1 = 1.6
c2 = 1.4
c3 = 2.0
c4 = 1.1

…
Client c2

Arrival time = 2.6

Client c3
Arrival time = 3.1

Client c4
Arrival time = 5.2

Time line

• Next arrival event:
• c2 at time 2.6
• c3 at time 3.1
• c4 at time 5.2

• Next server event:
• -

time = 2.4

Client c1
Arrival time = 0.8

Service
time:

c1 = 1.6
c2 = 1.4
c3 = 2.0
c4 = 1.1

…
Client c2

Arrival time = 2.6

Client c3
Arrival time = 3.1

Client c4
Arrival time = 5.2

Time line

• Next arrival event:
• c3 at time 3.1
• c4 at time 5.2

• Next server event:
• end c2 at time 4.0 (= 2.6 + 1.4)

time = 2.6

Client c1
Arrival time = 0.8

Service
time:

c1 = 1.6
c2 = 1.4
c3 = 2.0
c4 = 1.1

…
Client c2

Arrival time = 2.6

Client c3
Arrival time = 3.1

Client c4
Arrival time = 5.2

Time line

• Next arrival event:
• c4 at time 5.2 • Next server event:

• end c2 at time 4.0 (= 2.6 + 1.4)
• start c3 at time 4.0
• end c3 at time 6.0 (= 4.0 + 2.0)

time = 3.1

Client c1
Arrival time = 0.8

Service
time:

c1 = 1.6
c2 = 1.4
c3 = 2.0
c4 = 1.1

…
Client c2

Arrival time = 2.6

Client c3
Arrival time = 3.1

Client c4
Arrival time = 5.2

Time line

• Next arrival event:
• c4 at time 5.2 • Next server event:

• start c3 at time 4.0
• end c3 at time 6.0 (= 4.0 + 2.0)

time = 4.0

Client c1
Arrival time = 0.8

Service
time:

c1 = 1.6
c2 = 1.4
c3 = 2.0
c4 = 1.1

…
Client c2

Arrival time = 2.6

Client c3
Arrival time = 3.1

Client c4
Arrival time = 5.2

Time line

• Next arrival event:
• c4 at time 5.2 • Next server event:

• end c3 at time 6.0 (= 4.0 + 2.0)

time = 4.0

Client c1
Arrival time = 0.8

Service
time:

c1 = 1.6
c2 = 1.4
c3 = 2.0
c4 = 1.1

…
Client c2

Arrival time = 2.6

Client c3
Arrival time = 3.1

Client c4
Arrival time = 5.2

Time line

• Next arrival event:
• - • Next server event:

• end c3 at time 6.0 (= 4.0 + 2.0)
• start c4 at time 6.0
• end c4 at time 7.1 (= 6.0 + 1.1)

time = 5.2

Client c1
Arrival time = 0.8

Service
time:

c1 = 1.6
c2 = 1.4
c3 = 2.0
c4 = 1.1

…
Client c2

Arrival time = 2.6

Client c3
Arrival time = 3.1

Client c4
Arrival time = 5.2

Time line

• Next arrival event:
• - • Next server event:

• end c4 at time 7.1 (= 6.0 + 1.1)

time = 6.0

Client c1
Arrival time = 0.8

Service
time:

c1 = 1.6
c2 = 1.4
c3 = 2.0
c4 = 1.1

…
Client c2

Arrival time = 2.6

Client c3
Arrival time = 3.1

Client c4
Arrival time = 5.2

Time line

• Next arrival event:
• - • Next server event:

• -

time = 7.1

Client c1
Arrival time = 0.8

Service
time:

c1 = 1.6
c2 = 1.4
c3 = 2.0
c4 = 1.1

…
Client c2

Arrival time = 2.6

Client c3
Arrival time = 3.1

Client c4
Arrival time = 5.2

Department of Industrial Engineering and Innovation Sciences, Information Systems Group

Laura Genga

Lecture 2e – Petrol station example and manual simulation

Business Process Simulation

Overview on lecture modules

a) Conceptual model: main elements
b) Simple queuing system: process and information model
c) Simple queuing system: transition specifications
d) How does simulation work?
e) Petrol station example and manual simulation
f) Additional examples

64

Queuing systems in general

Properties:
• Generating arrivals
• Early departure of clients
• Limited capacity of the queue
• Maximum number of clients
• Several servers
• Several queues
• Queueing discipline (FIFO, SPT, …)
• Etc.

EXAMPLE: The Petrol Station

The owner of the petrol station has the feeling that
some potential clients are leaving the station because
there is no place to wait for service

PUMP
Max 3 cars
FIFO

Petrol station

The process model

c

c

c (c, p)(c, p)c

p

p

End
Serve

Start
ServeArrive Served

Car

Coming

Car

Free

Pump

Busy

CarAtPump

Wait

Car

n

c

c

c (c, p)(c, p)c

p

p

End
Serve

Start
ServeArrive Served

Car

Coming

Car

Free

Pump

Busy

CarAtPump

Wait

Car

The process model

• Generating customer arrivals

n

cc

c

c

c (c, p)(c, p)c

p

p

Drive On

End
Serve

Start
ServeArrive Served

Car

Coming

Car

Gone

Car

Free

Pump

Busy

CarAtPump

Wait

Car

The process model

• Generating customer arrivals
• Limited capacity of queue ‘Wait’
• Decision to drive on when queue full

The object model

The object model

Maximum queueing
space (assuming one

pump)

Specification of the initial situation

Specification of the initial situation

p1: Pump ∧
p1.BusyTime = 0 ∧

c1: Car ∧
c1.Place = Coming ∧
c1.ArrivalTime = r.NegExpo(4) ∧
c1.ServiceTime = r.Uniform(1,6) ∧
c1.WaitingTime = 0 ∧

Wait: Queue ∧
Wait.Size = 3 ∧

now: Clock ∧ now.Time = 0 ∧
r: RandomGenerator ∧ r.Seed = 1

n

cc

c

c

c (c, p)(c, p)c

p

p

Drive On

End
Serve

Start
ServeArrive Served

Car

Coming

Car

Gone

Car

Free

Pump

Busy

CarAtPump

Wait

Car

The transition specifications

Arrive
Pre: c.ArrivalTime = now.Time
Post: Wait <- c ∧

Coming <- n ∧
n.ArrivalTime := c.ArrivalTime + r.NegExpo(4) ∧
n.ServiceTime := r.Uniform(1,6) ∧
n.WaitingTime := 0

StartServe
Pre: c ∈ Wait.First ∧ Wait.Length ≤ Wait.Size;
Post: Busy <- (c, p) ∧

p.EndTime := now.Time + c.ServiceTime ∧
p.BusyTime := ~(p.BusyTime) + c.ServiceTime ∧
c.WaitTime := now.Time – c.ArrivalTime;

EndServe
Pre now.Time = p.EndTime
Post Free <- p ∧

Served <- c;

DriveOn
Pre Wait.Length > Wait.Size

∧ c ∈ Wait.Last
Post Gone <- c;

Functions Specifications

Function

PercUnServed =
(Gone.Length / (Gone.Length + Served.Length)) * 100;

AvgWaitTime =
Sum(c.WaitTime: c ∈ Served) / Served.Length;

Manual simulation

Replay a small simulation by hand
• e.g. for 10 clients
Generate (inter)arrival times and service times
Note down the state of the system after each simulation step, include:
• marking of places with tokens
• relevant values of variables

EXAMPLE: Petrol Station

Car Inter Arrival
time

Service time

c1 9 4
c2 5 5
c3 1 6
c4 2 3
c5 1 2
c6 2 1
c7 1 4
c8 5 2
c9 1 1

c10 2 1

Suppose we know the first
10 cars

Interarrrival times, services
times according to table:

Manual simulation

now.Time car Transition p.EndTime Wait c.WaitTime Busy Free Served Gone
9 c1 arrive c1 p1
9 c1 startserve 13 0 (c1, p1)

13 c1 endserve 13 p1 c1
14 c2 arrive c2 p1 c1
14 c2 startserve 19 0 (c2, p1) c1
15 c3 arrive 19 c3 (c2, p1) c1
17 c4 arrive 19 c3, c4 (c2, p1) c1
18 c5 arrive 19 c3, c4, c5 (c2, p1) c1
19 c2 endserve 19 c3, c4, c5 p1 c1, c2
19 c3 startserve 25 c4, c5 4 (c3, p1) c1, c2
20 c6 arrive 25 c4, c5, c6 (c3, p1) c1, c2
21 c7 arrive 25 c4, c5, c6 (c3, p1) c1, c2 c7
25 c3 endserve c4, c5, c6 p1 c1, c2, c3 c7
25 c4 startserve 28 c5, c6 8 (c4, p1) c1, c2, c3 c7
26 c8 arrive 28 c5, c6, c8 (c4, p1) c1, c2, c3 c7
27 c9 arrive 28 c5, c6, c8 (c4, p1) c1, c2, c3 c7, c9
28 c4 endserve 28 c5, c6, c8 p1 c1, c2, c3, c4 c7, c9
28 c5 startserve 30 c6, c8 10 (c5, p1) c1, c2, c3, c4 c7, c9
29 c10 arrive 30 c6, c8, c10 (c5, p1) c1, c2, c3, c4 c7, c9
30 c5 endserve 30 c6, c8, c10 p1 c1, c2, c3, c4, c5 c7, c9
30 c6 startserve 31 c8, c10 10 (c6, p1) c1, c2, c3, c4, c5 c7, c9
31 c6 endserve 31 c8, c10 p1 c1, c2, c3, c4, c5, c6 c7, c9
31 c8 startserve 33 c10 5 (c8, p1) c1, c2, c3, c4, c5, c6 c7, c9
33 c8 endserve 33 c10 p1 c1, c2, c3, c4, c5, c6, c8 c7, c9
33 c10 startserve 34 4 (c10, p1) c1, c2, c3, c4, c5, c6, c8 c7, c9
34 c10 endserve 34 p1 c1, c2, c3, c4, c5, c6, c8, c10 c7, c9

Length 8 2

Sum 41

Manual simulation

now.Time car Transition p.EndTime Wait c.WaitTime Busy Free Served Gone
9 c1 arrive c1 p1
9 c1 startserve 13 0 (c1, p1)

13 c1 endserve 13 p1 c1
14 c2 arrive c2 p1 c1
14 c2 startserve 19 0 (c2, p1) c1
15 c3 arrive 19 c3 (c2, p1) c1
17 c4 arrive 19 c3, c4 (c2, p1) c1
18 c5 arrive 19 c3, c4, c5 (c2, p1) c1
19 c2 endserve 19 c3, c4, c5 p1 c1, c2
19 c3 startserve 25 c4, c5 4 (c3, p1) c1, c2
20 c6 arrive 25 c4, c5, c6 (c3, p1) c1, c2
21 c7 arrive 25 c4, c5, c6 (c3, p1) c1, c2 c7
25 c3 endserve c4, c5, c6 p1 c1, c2, c3 c7
25 c4 startserve 28 c5, c6 8 (c4, p1) c1, c2, c3 c7
26 c8 arrive 28 c5, c6, c8 (c4, p1) c1, c2, c3 c7
27 c9 arrive 28 c5, c6, c8 (c4, p1) c1, c2, c3 c7, c9
28 c4 endserve 28 c5, c6, c8 p1 c1, c2, c3, c4 c7, c9
28 c5 startserve 30 c6, c8 10 (c5, p1) c1, c2, c3, c4 c7, c9
29 c10 arrive 30 c6, c8, c10 (c5, p1) c1, c2, c3, c4 c7, c9
30 c5 endserve 30 c6, c8, c10 p1 c1, c2, c3, c4, c5 c7, c9
30 c6 startserve 31 c8, c10 10 (c6, p1) c1, c2, c3, c4, c5 c7, c9
31 c6 endserve 31 c8, c10 p1 c1, c2, c3, c4, c5, c6 c7, c9
31 c8 startserve 33 c10 5 (c8, p1) c1, c2, c3, c4, c5, c6 c7, c9
33 c8 endserve 33 c10 p1 c1, c2, c3, c4, c5, c6, c8 c7, c9
33 c10 startserve 34 4 (c10, p1) c1, c2, c3, c4, c5, c6, c8 c7, c9
34 c10 endserve 34 p1 c1, c2, c3, c4, c5, c6, c8, c10 c7, c9

Length 8 2

Sum 41

Manual simulation

Percentage of customers driving on:
PrecUnServed =

(Gone.Length / (Gone.Length + Served.Length)) * 100%

2/(8+2) * 100% = 20%

5 10 15 20 25 30 35

1

4

N
um

be
r

of
 c

ar
s

in
 s

ys
te

m

Time

Department of Industrial Engineering and Innovation Sciences, Information Systems Group

Laura Genga

Lecture 2f – Additional examples

Business Process Simulation

Overview on lecture modules

a) Conceptual model: main elements
b) Simple queuing system: process and information model
c) Simple queuing system: transition specifications
d) How does simulation work?
e) Petrol station example and manual simulation
f) Additional examples

82

EXAMPLE 2: The Harbour Case

Dock 1Dock 2

Expo(5.5)Expo(6.7)

U(3.7)U(2.8)

1.5*U(2.8)2*U(3.7)

SPT
QUEUE

SPT
QUEUE

The decision problem

The management team of the harbour wonders what is the impact on the
mean expected throughput time of:

closing dock1 to big ships and dock2 to small ships?
using a FIFO rule (First In First Out) instead of the SPT (Shortest Process
Time) rule?

Can we help the management team to get answers to their questions?

Step 1.1: Decision Frame

“mean expected
throughput time”

- queuing discipline
- resource allocation
strategy

Decrease “mean expected throughput time”

Objective

Performance
Indicator

Decision
Variable

Step 1.2: Research Questions

What is the mean expected throughput time of ships at the harbour?
• In the current case
• if we close dock1 to big ships and dock2 to small ships,
• if we use a FIFO rule instead of the SPT rule
• if we make both adjustments

In which of these scenario’s does the average expected throughput
time decrease?

Step 1.3: Scope and level of detail

The two docks with
• Start events
• End events
The ships with
• Arrival events
• Change queue events
• Start service events
The queues with
• Their queueing discipline (SPT)

Step 2.1: Black Box

HARBOR
Decision
variables

• queue discipline (FIFO / SPT)
• dock allocation strategy

Output
variables

• average throughput time

Environmental Variables
• interarrival time of (types of) ships
• service time of docks

Step 2.2: Assumptions and Givens

G1: There are two types of ships: small and big
G2: Interarrival times of
• big ships (Expo(5,5)) and
• small ships (Expo(6,7))
G3: Service times of
• dock 1 (Uniform(3,7)) and
• dock 2 (Uniform(2,8))

A1: Docks operate 24/7
A2: No maintenance of docks required
A3: Only the first ship in the queue (i.e. the one with the shortest processing
time, or the first one in the row) may change queues

Step 2.3: Is simulation suitable?

Change of queues can not be modeled in analytical models
Approximation with two M/G/1 queues possible:
• Dock 1 only for small ships, dock 2 only for big ships
• FIFO instead of SPT rule

Experimentation is not desirable.

Step 2.4: Number of models

Close dock1 to
big ships &
dock 2 to
small ships

Serve both
kinds of ships
at both docks

SPT

FIFO

SPT

FIFO

Current situation

Alternative 1

Alternative 2

Alternative 3

EXAMPLE 2: The Harbour Case

Dock 1Dock 2

Expo(5.5)Expo(6.7)

U(3.7)U(2.8)

1.5*U(2.8)2*U(3.7)

SPT
QUEUE

SPT
QUEUE

STEP 3: Process model

s

s s

s
s

d dn

(s, d)(s, d)sss

s

dd

(s, d)(s, d)ss

n

s

MoveTo
Dock1

MoveTo
Dock2

End
Dock2

Start
Dock2

Arrive
Big

End
Dock1

Start
Dock1

Arrive
Small

Free
Dock2

Dock

Serve
Dock2

ShipDock

Wait
Dock2

Ship

New
Big

Ship

Served

Ship

Free
Dock1

Dock

Serve
Dock1

ShipDock

Wait
Dock1

Ship

New
Small

Ship

STEP 3: Information model

-ArrTimeInPlace
Token -/Length

-/First
-/Last

Place

* 1

-ArrivalTime
-ServiceTime
-WaitingTime
-ThroughputTime
-Size

Ship

-EndTime
-BusyTime
-Size

Dock

-Time : float
Clock

+draw()
+Uniform(in min , in max)
+NegExp(in x)
+Normal(in x, in s)

-Seed
RandomGenerator

Time : float
now : Clock

Seed = 1
r : RandomGenerator

ArrTimeInPlace
ArrivalTime = 0
ServiceTime = 0
WaitingTime = 0
ThroughputTime = 0
Size = small

s1 : Ship
ArrTimeInPlace
ArrivalTime = 0
ServiceTime = 0
WaitingTime = 0
ThroughputTime = 0
Size = big

s2 : Ship
ArrTimeInPlace
EndTime
BusyTime
Size

d1 : Dock
ArrTimeInPlace
EndTime
BusyTime
Size

d2 : Dock

STEP 3: Transition specifications

ArriveSmall
Pre s.ArrivalTime = now.Time;
Post WaitDock1 <- s ∧ s.ServiceTime := r.Uniform(3,7) ∧

NewSmall <- n ∧
n.ArrivalTime := now.Time + r.Negexp(5.5);

ArriveBig
Pre s.ArrivalTime = now.Time;
Post WaitDock2 <- s ∧ s.ServiceTime := r.Uniform(2,8) ∧ NewBig
<- n ∧

n.ArrivalTime := now.Time + r.Negexp(6.7);

MoveToDock1
Pre WaitDock1.Length = 0 ∧ d1.Place = FreeDock1 ∧
WaitDock2.Length>0

%Dock 1 should empty and ships should be waiting
for Dock 2%

Post WaitDock1 <- s ∧
s.ServiceTime := r.Uniform(2,8) * 1.5

MoveToDock2
Pre WaitDock2.Length = 0 ∧ d2.Place = FreeDock2 ∧
WaitDock1.Length>0

%Dock 2 should empty and ships should be waiting
for Dock 1%

Post WaitDock2 <- s ∧
s.ServiceTime := r.Uniform(3, 7)*2

StartDock1
Pre s.ServiceTime = Min(s ∈ WaitDock1: s.ServiceTime) %SPT
selection%
Post ServeDock1 <- (s d) ∧

d.EndTime := now.Time + ~(s.ServiceTime) ∧
d.BusyTime := ~(d.BusyTime) + ~(s.ServiceTime) ∧
s.WaitingTime := now.Time - ~(s.ArrivalTime) ;

StartDock2
Pre s.ServiceTime = Min(s ∈ WaitDock2: s.ServiceTime) %SPT
selection%
Post ServeDock2 <- (s, d) ∧

d.EndTime := now.Time + ~(s.ServiceTime) ∧
d.BusyTime := ~(d.BusyTime)+ ~(s.ServiceTime) ∧
s.WaitingTime := now.Time - ~(s.ArrivalTime) ;

EndDock1
Pre now.Time = d.EndTime
Post Served <- t ∧

s.ThroughputTime := now.Time - ~(s.ArrivalTime) ∧
FreeDock1 <- d;

EndDock2
Pre now.Time = d.EndTime
Post Served <- t ∧

s.ThroughputTime := now.Time - ~(s.ArrivalTime) ∧
FreeDock2 <- d;

STEP 3: Init & function specifications

Init
s1: Ship ∧ s1.Place = NewSmall ∧ s1.ArrivalTime = 0 ∧ s1.Size = small ∧
s2: Ship ∧ s2.Place = NewBig ∧ s2.ArrivalTime = 0 ∧ s2.Size = big ∧
d1: Dock ∧ d1.Place = FreeDock1 ∧ d1.BusyTime = 0 ∧
d2: Dock ∧ d2.Place = FreeDock2 ∧ d2.BusyTime = 0 ∧
r: RandomGenerator ∧ now: Clock;

Functions
MeanTPT = Sum(s.ThroughputTime: s ∈ Served) / Served.Length;

EXAMPLE: closed system

M/M/1 with maximum of 100 customers

c

n

cc (c, s)(c, s)c

s

s

End
Serve

Start
ServeArrive Served

Client

New

Client

Free

Server

Busy

ClientServer

Wait

Client

Return
cc

Return
Pre c ∈ Served
Post Wait <- c ∧

c.ArrivalTime := c.EndTime + r.NegExp(5)

Arrive
Pre c.ArrivalTime = now.Time ∧ c.ID < 101
Post Wait <- c ∧

c.ServiceTime := 0 ∧
c.WaitingTime := 0 ∧
New <- n ∧
n.ArrivalTime := ~(c.ArrivalTime) + r.NegExp(5) ∧
n.ID := ~(c.ID) + 1 ;

EXAMPLE: closed system

-/Length
-/First
-/Last

Place

* 1

-Time : float
Clock

+draw()
+Uniform(in min , in max)
+NegExp(in x)
+Normal(in x, in s)

-Seed
RandomGenerator

Time : float
now : Clock

Seed = 1
r : RandomGenerator

-ArrTimeInPlace
Token

ArrTimeInPlace
ArrivalTime = 1.32
ServiceTime = 0
WaitingTime = 0
ID = 0001

c1 : Client

-ArrivalTime
-ServiceTime
-WaitingTime
-ID

Client

-BusyTime
-EndTime

Server

ArrTimeInPlace
BusyTime = 0
EndTime = 0

s1 : Server

* 1

ArrTimeInPlace
BusyTime = 0
EndTime = 0

s2 : Server

-Size
Queue

/Length
/First
/Last
Size = 100

Wait : Queue

Summary of today’s lecture

STEP 3: Conceptual model
• Process model (classical petri net)
• Information model (UML diagram)
• Specifications (initial situation, transitions, measurement functions)

Examples of modeling patterns and design decisions
• Generating clients
• Maximum queue length + early departure of customers
• Switching queues
• Queue discipline (FIFO/SPT)

Manual simulation

	Business Process Simulation
	Overview on lecture modules
	Overview of today’s lecture
	Recap Simulation Methodology (7 steps)
	Recap Simulation Methodology
	EXAMPLE: The Petrol Station
	The Petrol Station – STEP 1 Decision Frame
	The Petrol Station – STEP 2 Black box �representation
	Simulation Methodology (7 steps)
	Conceptual model
	Conceptual model
	Conceptual model
	Conceptual model
	Conceptual model
	Conceptual model
	Conceptual model
	Specifying the initial state
	Conceptual model
	Conceptual model
	Conceptual model
	Conceptual model
	Business Process Simulation
	Overview on lecture modules
	Simple queueing system
	Simple queueing system
	Simple queueing system �
	Simple queueing system
	Simple queueing system
	Simple queueing system
	Simple queueing system
	Simple queueing system
	Simple queueing system
	Simple queueing system
	Simple queueing system
	Business Process Simulation
	Overview on lecture modules
	Transition specifications
	Simple queueing system – specifications
	Simple queueing system – specifications
	Simple queueing system – specifications
	Simple queueing system – specifications
	Simple queueing system – specifications
	Pre- and post-condition language
	Specification language
	Conceptual model
	Business Process Simulation
	Overview on lecture modules
	How does simulation work?
	How does simulation work?�
	Events and transitions
	Time line
	Time line
	Time line
	Time line
	Time line
	Time line
	Time line
	Time line
	Time line
	Time line
	Time line
	Time line
	Business Process Simulation
	Overview on lecture modules
	Queuing systems in general
	EXAMPLE: The Petrol Station
	The process model
	The process model
	The process model
	The object model
	The object model
	Specification of the initial situation
	Specification of the initial situation
	The transition specifications
	Functions Specifications
	Manual simulation
	EXAMPLE: Petrol Station
	Manual simulation
	Manual simulation
	Manual simulation
	Business Process Simulation
	Overview on lecture modules
	EXAMPLE 2: The Harbour Case
	The decision problem
	Step 1.1: Decision Frame
	Step 1.2: Research Questions
	Step 1.3: Scope and level of detail
	Step 2.1: Black Box
	Step 2.2: Assumptions and Givens
	Step 2.3: Is simulation suitable?
	Step 2.4: Number of models
	EXAMPLE 2: The Harbour Case
	STEP 3: Process model
	STEP 3: Information model
	STEP 3: Transition specifications
	STEP 3: Init & function specifications
	EXAMPLE: closed system
	EXAMPLE: closed system
	Summary of today’s lecture

