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Abstract

How do you determine if two objects have the same shape? How
do you reconstruct a room from echoes? How do you find
HAZMAT signs in a picture? How do you reconstruct 3D objects
from a movie? These questions boil down to the problem of
characterizing the orbits of the action of a Lie group on a
manifold. In this talk, I will discuss how to use invariants to solve
such problems. In particular, I will discuss how to recognize
configurations of points up to a rigid motion and relabeling using
the ”bag of distances,” the related problem of reconstructing the
shape of a room consisting of planar walls from the echoes heard
by four microphones held in a rigid configuration on a drone, and
how to detect symmetries in an object on an image using a
pyramid of moment invariants.
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A Bit of Invariant Theory

Definition
A group action or transformation group is given by a group G ,
a smooth manifold M, and a smooth map Φ : G ×M → M,
denoted by Φ(g , x) = g · x , which satisfies

e · x = x ,

g · (h · x) = (g ∗ h) · x ,

for all x ∈ M and all g ∈ G .

3 / 44



A Bit of Invariant Theory

Example: Rotations in R2

▶ G = SO(2), group of 2× 2 orthogonal matrices with
determinant 1

▶ M = R2

▶ (
cos θ − sin θ
sin θ cos θ

)
·
(

x1
x2

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x1
x2

)
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A Bit of Invariant Theory

Given is the action of a group G on a manifold M.

Definition:
Let x ∈ M. The orbit through x is

{g · x |g ∈ G}.
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A Bit of Invariant Theory

Example:

When SO(2) acts on the plane by rotation, then the orbits are
either

1. circles around the origin (submanifolds of dimension one)

2. a single point at the origin (submanifold of dimension zero)
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A Bit of Invariant Theory

Definition:
Given the action of a group G on a manifold M, an invariant is a
real-valued function

I : M → R

such that

I (g · x) = I (x), for all x ∈ M and all g ∈ G .
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A Bit of Invariant Theory

Example:

The Euclidean norm |x | of a point x ∈ R2 is invariant under the
action of SO(2) on the plane by rotation.
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A Bit of Invariant Theory

Theorem
Given is action of group G on a manifold M with dimension m.
Assume all the orbits of action of G on M have same dimension s.
Assume also that each point of M has an arbitrarily small
neighborhood whose intersection with each orbit is connected.
Then

▶ (Invariant Generation)There exist m − s functionally
independent invariants I1, . . . , Im−s , called fundamental
invariants, such that any other invariant can be expressed,
locally, as a function of those fundamental invariants.

▶ (Orbit Separation) Two points x1, x2 ∈ M are in the same
orbit if and only if

I1(x1) = I1(x2), . . . , Im−2(x1) = Im−2(x2).
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A Bit of Invariant Theory

The Moving Frame Method

▶ originally formulated by Elie Cartan in 19371

▶ yields a fundamental set of separating invariants.

▶ builds on idea of Frenet-Serret frame for planar curves from
1851 and 185223

▶ Reformulated as a systematic method by Fels and Olver in
19984.

1Cartan, “La théorie des groupes finis et continus et la géométrie
différentielle traitée par la méthode du repère mobile”.

2Frenet, “Sur les courbes a double courbure.”
3Serret, “Sur quelques formules relatives à la théorie des courbes à double

courbure.”
4Fels and Olver, “Moving coframes: I. A practical algorithm”.
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Recognizing the shape of a smooth planar curve

Given are two smooth curves in the plane.

We would like to know if one can rotate and translate the first
curve so to obtain the second curve.

Group is SE (2)

▶ SE (2) = SO(2)⋉R2, called special Euclidean group
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Recognizing the shape of a smooth planar curve

No invariant for “point transformations”

▶ When SE (2) acts on R2, every orbit has dimension 2.

▶ dim (space)-dim(orbits)=2-2=0

▶ So 0 invariants
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Recognizing the shape of a smooth planar curve

Trick:
increase dimension of M by prolonging action on “jet space”
(bundle)
Example

▶ Suppose curve is parameterized as y = u(x).

▶ coordinatize curve as a point (x , u(x), u′(x), u′′(x)) ∈ R4

▶ Orbit dimension of prolonged action is 3

▶ dim (space)-dim(orbits)=4-3=1

▶ So one fundamental invariant: curvature

κ(x1) =
u′′(x)

(1 + u′(x)2)
3
2

differential invariant = invariant of the prolonged action of a
group on the jet space
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Recognizing the shape of a smooth planar curve

Theorem (Cartan)

Two submanifolds are (locally) equivalent if and only if they have
the same functional relationships among all their differential
invariants.
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Recognizing the shape of a smooth planar curve

Definition
The special Euclidean signature curve associated with a plane
curve is the planar curve parametrized by the curvature and its first
derivative with respect to arc length.

Theorem56

Two analytic curves can be mapped to each other by a special
Euclidean transformation g ∈ SE (2) (rotation and translation) if
and only if their special Euclidean signature curves are identical.

5Calabi et al., “Differential and numerically invariant signature curves
applied to object recognition”.

6Musso and Nicolodi, “Invariant signatures of closed planar curves”.
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Recognizing the shape of a discretized planar curve

What if we are only given a finite number of points on/near
the curve?
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Recognizing the shape of a discretized planar curve

Trick:
increase dimension of space by prolonging action on cartesian
product M ×M × . . .×M.

Example

▶ Suppose G = SE (2) acts on R2 by rotation/translation:

g · x = Rx + T , R ∈ SO(2),T ∈ R2.

▶ We can prolong the action of G onto R2 × R2 by acting on
two points simultaneously

g · (x1, x2) = (Rx1 + T ,Rx2 + T ), R ∈ SO(2),T ∈ R2.

▶ One fundamental invariant: distance between two points

I1(x1, x2) = ∥x2 − x1∥
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Recognizing the shape of a discretized planar curve

joint invariant=Invariant of the prolonged action of a group on
cartesian product

Idea:
Replace differential invariant signature by joint invariant signature

Two Ways

1. Approximate differential invariants by joint invariants7

2. Parameterize entirely new signature curve using distances and
areas8

7Calabi et al., “Differential and numerically invariant signature curves
applied to object recognition”; Boutin, “Numerically invariant signature
curves”.

8Boutin, “Joint invariant signatures for curve recognition”.
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Recognizing the shape of a point configuration

What if the points given are not ordered?

Two approaches

▶ Method 1: moment invariants (Pascal Triangle)

▶ Method 2: distribution of distances
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Recognizing the shape of a point configuration

Method 1: moment invariants (Pascal Triangle)

▶ Given are K points in R2 at positions (xk , yk), k = 1, . . . ,N.

▶ Can assign a weight ωk ∈ R≥0 to each point

▶ View the points are a (greyscale) digital image of an object

20 / 44



Recognizing the shape of a point configuration

Method 1: moment invariants (Pascal Triangle)

▶ Let zk = xk + iyk
▶ Compute the moments µm,r =

∑
k ωkz

m
k (z∗k )

r

▶ The pascal triangle is this pyramid of moments:

µ0,0
µ0,1 µ1,0

µ0,2 2µ1,1 µ2,0
µ0,3 3µ1,2 3µ2,1 µ3,0

µ0,4 4µ1,3 6µ2,2 4µ3,1 µ4,0

.

.

.
µ0,r

( r
1

)
µ1,r−1 · · ·

( r
l

)
µl,r−l · · ·

( r
r−1

)
µr−1,1 µr,0

.

.

.
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Recognizing the shape of a point configuration

Method 1: moment invariants (Pascal Triangle)

Moving Frame method yields coordinates invariants under
rotations/translations9

(assuming center of mass is at origin, µ0,1 = µ1,0 = 0.)

µ0,0
µ0,1

eiθ0

µ1,0

e−iθ0
|µ0,2| 2µ1,1 |µ2,0|

µ0,3

ei3θ0
3
µ1,2

eiθ0
3

µ2,1

e−iθ0

µ3,0

e−i3θ0
µ0,4

ei4θ0
4

µ1,3

ei2θ0
µ2,2 4

µ3,1

e−i2θ0

µ4,0

e−i4θ0

.

.

.
µ0,r

eirθ0
· · ·

( r
l

) µl,r−l

ei(r−2l)θ0
· · ·

µr,0

e−irθ0

where

θ0 =


1
2
∢(µ⃗0,2, e⃗1) if ∢(µ⃗1,2, e⃗1) − 1

2
∢(µ⃗0,2, e⃗1) ∈ [−π

2
, π

2
],

1
2
∢(µ⃗0,2, e⃗1) + π if ∢(µ⃗1,2, e⃗1) − 1

2
∢(µ⃗0,2, e⃗1) ∈ (π

2
, 3π

2
],

1
2
∢(µ⃗0,2, e⃗1) − π if ∢(µ⃗1,2, e⃗1) − 1

2
∢(µ⃗0,2, e⃗1) ∈ [− 3π

2
,−π

2
).

9Boutin, Huang, et al., “The Pascal triangle of a discrete image: definition,
properties and application to shape analysis”.
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Recognizing the shape of a point configuration

Method 1: moment invariants (Pascal Triangle)

The moments represent the shape of the object

w.l.o.g. assume center of mass is at origin (µ0,1 = µ1,0 = 0.)

▶ the quantity 0 ≤ |µ0,2|
µ1,1

≤ 1 measures the elongation of the

object; the object lies within a straight line if and only if
|µ0,2|
µ1,1

= 0

▶ The object is symmetric with respect to the x-axis if and only
all the µi ,j ’s are real.

▶ The object has a K-fold rotational symmetry if and only if
µi ,j = 0 when j − i is not a multiple of K .
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Recognizing the shape of a point configuration

Method 2: Bag of distances

▶ Compute the pairwise distances

▶ Forget the labeling

Can we reconstruct the points from the bag of distances?
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Recognizing the shape of a point configuration

Reconstructing a point configuration from unlabeled distances
is also a problem encountered in

▶ x-ray crystallography (Patterson 1935, Patterson 1944)

▶ mapping of restriction sites of DNA- partial digest problem-
(Stefik 1978, Dix and Kieronska 1988, Gwangsoo 1988,...)

▶ material science (Jiao-Stillinger-Torquato 2010)

▶ ...

“Turnpike Problem” or ”Partial Digest Problem”: points lie in R.
“Beltway Problem”: the points lie on a circle.
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Recognizing the shape of a point configuration

Question: Is the problem well-posed?

i.e., is the shape of a point-set uniquely determined by its
unlabeled pairwise distances?

Example10

Is there a unique configuration of 4 points in the plane (up to a
rigid motion) whose pairwise distances are

{
√
2,
√
2, 2,

√
10,

√
10, 4}?

10Boutin and Kemper, “On reconstructing n-point configurations from the
distribution of distances or areas”.
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Recognizing the shape of a point configuration

Question: Is the problem well-posed?

No.
Counterexample11

Two point-sets with the same pairwise distances

11Boutin and Kemper, “On reconstructing n-point configurations from the
distribution of distances or areas”.
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Recognizing the shape of a point configuration

Question: Is the problem well-posed?

For Turnpike Problem (D = 1):

▶ Picard (1939): Proof of uniqueness when no repeated
distances.

▶ Bloom (1977): 6-point counterexample.
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Recognizing the shape of a point configuration

Theorem (B.-Kemper)

Let n ∈ N with 0 < n ≤ 3 or n ≥ m + 2
There exists a non-zero polynomial in mn variables such that every
n-point configuration p1, . . . , pn ∈ Rm with f (p1, . . . , pn) ̸= 0 is
uniquely determined, up to a rigid motion, by the multiset of its
unlabeled pairwise distances.

Corollary

▶ The set of exceptional point configurations has measure zero.

▶ Fast comparison algorithm that is accurate with probability 1.
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Recognizing the shape of a point configuration

Extension to other cases
▶ Noisy point sets: use probability density function of distance

between two points drawn at random (i.i.d.) as a signature12.

▶ Weighted graphs: use multiset of weights (unlabeled) and
multiset of sum of pairs of adjacent weights (unlabeled) as a
signature13.

12Santos-Villalobos and Boutin, “Computationally efficient method to
compare the shape of planar Gaussian mixtures from point samples”.

13Boutin and Kemper, “Lossless representation of graphs using
distributions”.
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Reconstructing a wall arrangement from echoes

Given is a room:
▶ arrangement of planar “walls” (ceilings, floors,. . . );

▶ not necessarily convex;

▶ not necessarily closed;

▶ position and number of walls is unknown.
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Reconstructing a wall arrangement from echoes

We have 4 microphones:

▶ known positions m1,m2,m3,m4 ∈ R3;

▶ placed on a drone (allows rigid transformation).

An omnidirectional speaker emits a short pulse

▶ high-frequency so ray acoustics approximation holds;

▶ 1st order echoes: pulses heard after they bounce off the walls;

▶ other echoes discarded

▶ First order echoes give (unlabeled) distances to walls.
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Reconstructing a wall arrangement from echoes

Represent each wall W by a mirror point s ∈ R3

L

s1

s2ss

m1 m2

m3 m4

W1

W2

Virtually, sound comes from mirror points s1 and s2.
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Reconstructing a wall arrangement from echoes

If room has only one wall s

▶ Time between pulse emitted and first order echoes gives
microphone-wall distance

di = ∥mi − s∥2.

▶ Reconstruct s from m1,m2,m3,m4 and d1, d2, d3, d4.

▶ Reconstruct wall plane from s and L.

▶ Reconstruct 4 points on wall by intersecting wall plane with
line from s to mi , i = 1, . . . , 4.
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Reconstructing a wall arrangement from echoes

If room has several walls: must sort (i.e., label) the echoes

▶ Determining whether four distances (d1, d2, d3, d4) ∈ D
correspond to one wall,

i.e. these exists s s.t. ∥mi − s∥2 = di , for i = 1, 2, 3, 4.
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Echo Sorting

Five Point Echo Sorting Criterion14:

Let m1,m2,m3,m4,m5 ∈ R3.
Let Di ,j = ∥mi −mj∥2, i , j = 1, 2, 3, 4, 5 and u1, . . . , u5 ∈ R. Let

E :=


0 u1 · · · u5
u1 D1,1 · · · D1,5
...

...
...

u4 D4,1 · · · D4,5

u5 D5,1 · · · D5,5

 and gE (u1, u2, . . . , u5) := det(E ).

Then gE (d1, d2, d3, d4, d5) = 0 when d1, d2, d3, d4, d5 correspond to
same wall s.

14Dokmanić et al., “Acoustic echoes reveal room shape”.
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Echo Sorting

Why?

Because if x1, . . . , xk ∈ Rn, then the Euclidean Distance Matrix
∥x1 − x1∥2 ∥x1 − x2∥2 · · · ∥x1 − xk∥2
∥x2 − x1∥2 ∥x2 − x2∥2 · · · ∥x2 − xk∥2
∥x3 − x1∥2 ∥x3 − x2∥2 · · · ∥x3 − xk∥2

...
...

...
∥xk − x1∥2 ∥xk − x2∥2 · · · ∥xk − xk∥2

 ∈ Rk×k

has rank at most n + 2.
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Echo Sorting

Four Microphone Echo Sorting Criterion15:

Let Di ,j := ∥mi −mj∥2 and let u1 . . . u4 ∈ R. Let

D :=


0 u1 · · · u4 1
u1 D1,1 · · · D1,4 1
...

...
...

...
u4 D4,1 · · · D4,4 1
1 1 · · · 1 0

 and fM(u1 . . . u4) := det(D).

(1)
Then fM(d1 . . . d4) = 0 when d1, d2, d3, d4 correspond to the same
wall s.

15Boutin and Kemper, “A drone can hear the shape of a room”.
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Echo Sorting

Why?

▶ Set m0 = s.

▶ Then

detD = det


D0,0 D0,1 · · · D0,4 1
D1,0 D1,1 · · · D1,4 1
...

...
...

...
D4,0 D4,1 · · · D4,4 1
1 1 · · · 1 0


is the Cayley-Menger determinant of the 5-simplex
m0,m1,m2,m3,m4.
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Wall Reconstruction Algorithm

The Algorithm

1. For i = 1, . . . , 4, collect the times of the first-order echoes
recorded by the ith microphone in the set Ti .

2. Set Di := {c2(t − t0)
2 | t ∈ Ti} (i = 1, . . . , 4), where c is the

speed of sound and t0 is the time of sound emission.

3. FOR (d1, d2, d3, d4) ∈ D1 ×D2 ×D3 ×D4 DO
3.4 IF fM(d1, . . . , d4) = 0 THEN

3.4.5 Compute the mirror point s from (d1, . . . , d4).
3.4.6 Compute four non-collinear points on the wall with mirror

point s and, if desired, a normal vector.
3.4.7 OUTPUT the data of this wall.
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Wall Reconstruction Algorithm

Observe:
▶ Algorithm reconstructs all walls heard by 4 microphones.

▶ Algorithm could reconstruct walls that are not there (ghost
walls).
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Wall Reconstruction Algorithm

Example of Ghost wall

Wghost
L

m1

m2

m3

W1

W2 W3
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Wall Reconstruction Algorithm

Theorem (B.-Kemper)16

The set of bad drone positions lies in a subspace of dimension ≤ 5
within the 6-dimensional space of possible drone positions.

⇒ If drone in generic position, our algorithm only reconstructs
walls that are there.

So
▶ A drone in generic position can hear the shape of a room from

echoes.

16Boutin and Kemper, “A drone can hear the shape of a room”.
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Concluding Remarks

▶ Invariant theory is well developed; has a rich history.

▶ New objects (discrete, noise, complex structure) still pose
challenge.

Where to apply?

▶ Look for problem involving equations with extraneous
parameters;

▶ See if extraneous parameters can be viewed as parameters of a
group action ;

▶ Use invariants to rephrase the problem without the extraneous
parameters.

Merci!
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