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Machine learning and Al overview



What is Al?

» Two types of Al

» Symbolic/logical

» Machine learning (ML): imitation-based Al
» Current revolution in machine-learning-based Al

» Combination of big data, models that benefit from big data, more computing
power (GPUs) and accessible programming environments

» We are nowhere close to human-level intelligence
» Imitation of examples in the data, not thinking



Flavours of ML

» Supervised learning
» E.g. classification, regression, time series prediction, emulators for expensive
simulators
» Qutcome: map: x — y
» Reinforcement learning

» Planning
» Outcome: policy: (state, observations) — actions

» Unsupervised learning
» E.g. dimensionality reduction, generative modelling



Big data revolution in ML
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Deep neural networks and data

v

Most typical applications in supervised learning
» Require annotated (input, target output) pairs

v

Current methods need a lot of data

v

100000 cases is a good start, the more the better!
» Upper limit still has not been found!

Research viewpoint: less data may be OK, but more work and expertise needed
for good results

v



Limitations of deep neural networks (DNNs)

» DNNs are susceptible to adversarial examples

> In classification: selected examples with imperceptible differences are
seriously misclassified



Limitations of deep neural networks (DNNs)

» DNNs are susceptible to adversarial examples
> In classification: selected examples with imperceptible differences are
seriously misclassified

“pig” (91%) noise (NOT random) “airliner” (99%)

+ 0.005 x

Szegedy et al. (arXiv:1312.6199) via https://adversarial-ml-tutorial.org/



Limitations of deep neural networks (DNNs)

» DNNs are susceptible to adversarial examples

> In classification: selected examples with imperceptible differences are
seriously misclassified

» This is a feature, not a bug

» Robustness—accuracy trade-off
» More prior knowledge (e.g. structured models) can help

» Major challenge for reinforcement learning and optimisation
» Algorithms will learn to exploit any weaknesses of the model



Outline

Learning for differential equations with probabilistic models



Probabilistic modelling and differential equations

» Inference of unknown parameters 6 and initial conditions xp in an ODE from noisy
observations Y = [y(t1),...,y(tn)], where

X' (t) = g(x(t),6), x(0) =xo
y(ti) = x(ti) + nj
» Inference of latent driving functions f(t) (latent force models)

X' (t) = g(x(t), f(£),0), x(0)=xo
y(ti) = x(ti) + ni



Modelling latent driving functions: Gaussian processes

» Gaussian process priors on driving functions f(t)

» Functional prior, specified by mean and covariance functions
» No need for time discretisation
» Can capture diverse activation profiles

f(t) - GP (u(t), k(t,t")

where

p(t) =E[f ()] = (f (¢))
k(t,t)=E[(f(t)—p()(F(t)—pn(t))]



Gaussian process examples: squared exponential covariance

prior posterior




Gaussian process examples: Matern covariance

prior posterior
3 | I I |




Gaussian processes and ODEs (Lawrence et al., NIPS 2006)

» Assume x ~ N (p, X)
» Affine transformation Ax 4+ b follows

(Ax + b) ~ N(Au + b, AZAT)



Gaussian processes and ODEs (Lawrence et al., NIPS 2006)

» Assume x ~ N (p, X)

» Affine transformation Ax 4+ b follows

(Ax + b) ~ N(Au + b, AZAT)

» Insight: an analogous property applies to Gaussian processes:
For suitable g(), the solution for x(t) in

PO — g, 70).0)
is an affine operator x(t) = L,(f(t)) of f(t)

= Joint Gaussian process over f(t), x(t)



ODE Gaussian process

» Assuming x(t) ~ GP(ux(t), kxx(t, ")), how to evaluate the mean function pu(t)
and covariance ky(t,t')?

px(t )= p(r(t) [Le(F(1))]
k(. t') = Ep(r(e), 1) [(Le (F(£)) — 1 (£))(Le(F(2)) — pix(2)) ]

» For suitable ks (t,t') and linear g, these can be evaluated in closed form, leading
to very efficient computation

» E.g. squared exponential covariance:

(t—t)?
ker(t,t') = acexp <2£2



ODE Gaussian process applications |

» Single input motif gene regulation (Lawrence et al., NIPS 2006; Gao et al.,
Bioinformatics 2008):

dX,'(t)
dt

=B+ S,f(t) - D,'X,'(t)

» x;(t) target gene expression
» f(t) regulator activity



ODE Gaussian process applications |l

» Translation+transcription model of gene regulation (Honkela et al., PNAS 2010;
Gao et al., Bioinformatics 2008):

P _ (o)~ sp(r)
dfi"(tt) = B; + Sip(t) — Dix;(t)

» x;(t) target gene expression
» p(t) regulator activity
» f(t) regulator mRNA expression



ODE Gaussian process applications IlI

» Modelling transcription+expression (Honkela et al., PNAS 2015):

dx(t)
dt

= B+ Sf(t — A) — Dx(t)

» x(t) gene expression
» f(t) transcriptional activity



Non-linear ODEs

> If Lg is not affine, x(t) will not follow Gaussian process
» Approximations still possible
» E.g. non-linear gene regulation model by Titsias et al. (BMC Systems Biology,

2012):

dzfit) = fi(t) — oipi(t)

d)(;fit) = bj + sJ-G(pl(t), ce ,,D/(t); HJ) - dJXJ(t)
with

1
1+ e—Wjo—2 i1 wjilog pi(t)

G(pi(t),---,pi(t); wj, wjo) =



Gene transcription and expression model (Honkela et al., PNAS 2015)
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Gene transcription and expression fits (Honkela et al., PNAS 2015)
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Gene transcription and expression fits (Honkela et al., PNAS 2015)
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Gene transcription and expression fits (Honkela et al., PNAS 2015)
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Gene transcription and expression fits (Honkela et al., PNAS 2015)
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Gene transcription and expression fits (Honkela et al., PNAS 2015)
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Gene transcription and expression fits (Honkela et al., PNAS 2015)
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Other interesting probabilistic models



Inferring simulators from data

How to fit a
model to data
when no
standard tools

apply

+ only indirect
observations

* likelihoods
intractable

FCAI
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BOLFI: Gutmann & Corander2016



Example: Probabilistic modelling in cosmology (Regier et al., ICML 2015)
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Figure 1. An image from the Sloan Digital Sky Survey (SDSS, Lnbm ®
2015) of a galaxy from the constellation Serpens, 100 million M "
light years from Earth, along with several other galaxies and many B

stars from our own galaxy. N
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Probabilistic programming



Implementation: Probabilistic programming

» Probabilistic inference is hard

» Typically expert derivations, coding & tuning are required for good results
» Some easy-to-use frameworks exists, but often limited in scope

» Almost all real applications require computational approximations

» Non-trivial to judge if these are accurate enough

> Idea of probabilistic programming: user writes a description of the model, the
machine takes care of the rest

» Cf. writing machine code in assembly language vs. high level code
» Key challenge: how to perform inference efficiently
» Emerging solutions: Stan, Edward, PyMC3, Pyro, ELFI, ...



Probabilistic programming example (Carpenter et al., JASS 2016)

parameters {

simplex[K] theta[M]; // topic dist for doc m
simplex[V] psilK]; // word dist for topic k
}
model {

for (m in 1:M)
theta[m] ~ dirichlet(alpha); // prior
for (k in 1:K)
psilk] ~ dirichlet(beta); // prior
for (n in 1:N) {
real gamma[K];
for (k in 1:K)
gamma [k] <- log(thetaldoc[n],k]) + log(psilk,w[nl]l);
increment_log_prob(log_sum_exp(gamma)); // likelihood
}
}



Conclusion

Deep neural networks (most) useful for unstructured problems with massive data
Probabilistic models allow incorporating structure such as known physics
Likelihood-free inference can incorporate existing simulators

Gaussian processes are a powerful tool for modelling latent functions

vV V.V v Y

Probabilistic programming big help for implementation

‘ 4JPYMC3

http://mc-stan.org http://edwardlib.org

IV GPflow %

http://pyro.ai http://gpflow.org http://elfi.ai

ELFI

Engine for Likelihood-Free Inference
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