Working as intended? Perceptions of success in AI Systems

Cynthia C. S. Liem

TUDelf

Multimedia Computing Group Delft University of Technology

About me

Foto: Marco Borggreve

ŤUDelft

Foto: Marcel Krijger

https://www.trouw.nl/politiek/hoe-debelastingdienst-lage-inkomensprofileerde-in-de-jacht-opfraude~bbb66add/

2

Methodological schools of thought

Design

Science

TUDelft

The computer scientist

Engineering

Arts

A world seeking to measure

Babylonic confusion

Algorithms

Exercise

• Write down your favorite recipe

A classical algorithmic problem: sorting

- Can be done in stupid and smart ways
- What is efficient for large numbers?
- What is applicable to any problem in which one can agree on a way of ordering?

Corresponding values

- Efficiency
- Generalization
- Scaling up
- Using the exact same procedure

Corresponding values

- Efficiency
- Generalization
- Scaling up
- Using the exact same procedure

• This may turn people into numbers

Corresponding values

- Efficiency
- Generalization
- Scaling up
- Using the exact same procedure

• They may be useful 'mirrors' to our thinking

Being precise is difficult!

https://www.youtube.com/watch?v=cDA3 5982h8

Machine learning

Learning patterns from data and labels

Learning patterns from data and labels

Learning patterns from data and labels

How we like to see the world

‴uDelft ^{€[}

Predicting unseen data points

Prediction or priorities?

TUDelft

Prediction or priorities?

Prediction or priorities?

We may find patterns in datasets

And often have limited resources

Choose 5 data points

Who gets prioritized?

• Choose 5 (fictional) human beings

Who gets prioritized?

• Choose 5 (fictional) human beings

https://tudelft.fra1.qualtrics.com/jfe/form/SV_6VuOKImn7QgDt5A

Same or different?

Got a positive 'binding study advice'
X Got a negative 'binding study advice'

Х

*

Х

High school final exam degree

Х

Х

Requested loan

Score of motivation test

Classifiers would not distinguish...

TUDelft

Humans actually do!

Fig. 6. Aggregated click heatmaps from audiences highly likely to have technical machine learning experience (python, dataScience, CSstudents, testingStudents and AICongress combined).

Fig. 7. Aggregated click heatmaps from audiences highly unlikely to have technical machine learning experience (rotary, policy, librarians, interim, professionalEdu, privacyCongress and ruleOfLaw combined).

Applying machine learning

Our usual focus

This focus often is too narrow

The domain expert's focus

What is it really about?

What may happen in practice?

Interdisciplinarity: Al and hiring

Cynthia C. S. Liem et al., Psychology meets Machine Learning: Interdisciplinary perspectives on algorithmic job candidate screening, in Explainable and Interpretable Models in Computer Vision and Machine Learning (pp. 197-253), 2018

TUDelft

Validity and reliability

Not Valid but Reliable

Valid but Not Reliable

Both Valid and Reliable

Relevant pipelines to my colleagues

looks familiar to what we do?

TUDelf

Relevant pipelines to my colleagues

Neuroticism scores are not significant to the prediction."

- they really focus on **x** and *y*, where we focus on *f*(**x**)
- our x is much more low-level than theirs
- their x and y often came from validated instruments

This is not a validated instrument...

Please assign the following attributes to one of the videos:

Friendly (vs. reserved)	Left	Don't know	Right
Authentic (vs. self-interested)	Left	Don't know	Right
Organized (vs. sloppy)	Left	Don't know	Right
Comfortable (vs. uneasy)	Left	Don't know	Right
Imaginative (vs. practical)	Left	Don't know	Right

Who would you rather invite for a job interview?

Left	Don't k	Right	
	Submit	Skip	

More on measurement:

ÍUDelft

Chris Welty, Praveen Paritosh and Lora Aroyo, "Metrology for AI: From Benchmarks to Instruments", arXiv:1911.01875 Abigail Z. Jacobs and Hanna Wallach, "Measurement and Fairness", Proc. FAccT 2021.

And what are x and y?

Delf

Delft

Delft

WHAT THE COMPUTER SEES

TUDelft

How do we represent 'the right answer', and what does this imply?

When does my system perform well?

• Our usual focus: how often are we **right**?

- Trivial measure: accuracy
 - # correctly classified samples / # total samples

When mathematical translation and natural vs. social measurements get blurry: examples from ImageNet

ImageNet

- Visual hierarchical ontology
- Large scale visual recognition challenges: automatic class recognition
- ILSVRC 2012: 1000 object classes

ImageNet labeling

- Amazon Mechanical Turk
- "Is there an [insert class name] in the image?"

Is there a bucket in this image?

ImageNet labeling

- Single label per image
- Top-5 accuracy

Preparation for mathematical batchprocessing

Item ID	 baseball	 Miniature schnauzer	 bucket	
172839	 0	 0	 1	

No true real-world sample (>100 sub-species of dogs)

 With a single class label per image, classes mathematically appear independent

ŤUDelft

 Learning typically optimizes for maximum likelihood of the target class

• Standardized input: crop from the image

(b) Cropped

(a) Original

	vgg16	vgg19	ResNet50	ResNet101
	laptop (0.9592)	laptop (0.9796)	laptop (0.9954)	laptop (0.9984)
	notebook (0.0346)	notebook (0.0191)	notebook (0.0042)	notebook (0.0015)
	iPod (0.0024)	iPod (0.0004)	space bar (0.0002)	space bar (0.0000)
THURSDAY .	hand-held computer (0.0011)	desktop computer (0.0002)	computer keyboard(0.0000)	mouse (0.0000)
	modem (0.0007)	space bar (0.0001)	mouse (0.0000)	computer keyboard (0.0000)

(c) Predictions

vgg16 vgg19 ResNet50 ResNet101 notebook (0.7222) notebook (0.7327) notebook (0.7230) notebook (0.8161) laptop (0.1866) laptop (0.1178) laptop (0.1689) laptop (0.1492) desktop computer (0.0244)desktop computer (0.0459)desktop computer (0.0420)modem (0.0100) space bar (0.0097) space bar (0.0243) space bar (0.0239) space bar (0.0091) solar dish(0.0092) hand-held computer (0.0152) mouse (0.0059) desktop computer (0.0041)

(a) Original (b) Cropped

(b) Cropped

(a) Original

TUDelft

(c) Predictions

'Ground truth' and its implications

• Is there a castle in this image?

Cynthia C. S. Liem and Annibale Panichella, "Oracle Issues in Machine Learning and Where to Find Them," Proc. RAISE 2020.

'Ground truth' and its implications

TUDelft

Cynthia C. S. Liem and Annibale Panichella, "Oracle Issues in Machine Learning and Where to Find Them," Proc. RAISE 2020.

'ILSVRC 2012 has been solved'

- In terms of %, few 'true' errors
 - If ground truth class is not in top-5, model suggestions seem acceptable to humans
- For object class recognition, this setup is fine

 But this is **not** comprehensive visual understanding!

Other issues: what can one truly visually illustrate?

Excavating AI

The Politics of Images in Machine Learning Training Sets

By Kate Crawford and Trevor Paglen

You open up a database of pictures used to train artificial intelligence systems. At first, things seem straightforward. You're met with thousands of images: apples and oranges, birds, dogs, horses, mountains, clouds, houses, and street signs. But as you probe further into the dataset, people begin to appear: cheerleaders, scuba divers, welders, Boy Scouts, fire walkers, and flower girls. Things get strange: A photograph of a woman smiling in a bikini is labeled a "slattern, slut, slovenly woman, trollop." A young man drinking beer is categorized as an "alcoholic, alky, dipsomaniac, boozer, lush, soaker, souse." A child wearing sunglasses is classified as a "failure, loser, nonstarter, unsuccessful person." You're looking at the "person" category in a dataset called ImageNet, one of the most widely used training sets for machine learning.

TUDelft

excavating.ai

Counting right vs. wrong

 Self-driving cars likely make less mistakes than humans---still, good reasons to not allow them on the road yet

False-positives vs. false-negatives

• Treat patient who may be ill in case of doubt?

False-positives vs. false-negatives

 Always halt similar people as 'potentially highrisk' if this may lead to feedback loops?

False-positives vs. false-negatives

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica May 23, 2016

https://www.propublica.org/article/machine-bias-riskassessments-in-criminal-sentencing

Inside the Suspicion Machine

Obscure government algorithms are making life-changing decisions about millions of people around the world. Here, for the first time, we reveal how one of these systems works.

EVA CONSTANTARAS, GABRIEL GEIGER, JUSTIN-CASIMIR BRAUN, OHRUV MEHROTRA, HTET AUNG Mar 6, 2023 7:00 am

https://www.wired.com/story/welfare-state-algorithms/

Software and systems engineering perspectives

When does my system perform well?

• Our usual focus: how often are we **right**?

• Often forgotten: how bad is **wrong**?

How the ML/AI part compares

D. Sculley et al., "Hidden Technical Debt in Machine Learning Systems", in proc. NIPS 2015.

TUDelft

Nithya Sambasivan et al., "Everyone wants to do the model work, not the data work": Data Cascades in High-Stakes AI", in proc.

Ways of working

Ways of working

Questionable representations and reductions

World views

World views

TUDelft

Irrefutable patterns?

Figure 3. Wu and Zhang's "criminal" images (top) and "non-criminal" images (bottom). In the top images, the people are frowning. In the bottom, they are not. These types of superficial differences can be picked up by a deep learning system.

https://arxiv.org/abs/1611.04135

"More Professional"

'Fairness'

ll)eli

- Fairness in AI currently a hot topic
- Be mindful: many mathematical definitions which cannot all be satisfied simultaneously (and link to differing ideological schools of thought)

Tutorial: 21 fairness definitions and their politics

https://www.youtube.com/watch? v=jlXluYdnyyk

Debiasing?

TUDel

- Full debiasing is a myth, and in many cases undesired
- Still, important to explicitly consider human rights, especially those of those not commonly at the table

https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai https://www.nist.gov/publications/towards-standard-identifying-and-managing-biasartificial-intelligence https://www.whitehouse.gov/ostp/ai-bill-of-rights/

Exercise: favorite and disliked food

 Think of your favorite food, as well as food that you really dislike

Exercise: favorite food commonalities

- Make 5 groups
- Find 3 common properties in your favorite foods. One should be able to give a binary answer (e.g. 'yes' or 'no') on the property being present

Scoring

 What scores do we get for your favorite and disliked food?

Questions on 'the truth' in music: What do we seek?

The Composition

Is it about being as precise as possible?

ÍUDelft

uit 'Chopin – Nocturne op. 9 no. 2' https://www.youtube.com/watch?v=9E6b3swbnWg (Vadim Chaimovich)

World views

TUDelft

Showing Songs for chopin op 9 no 2

	TITLE	ARTIST	ALBUM	<u>(</u>	ம
+	Nocturnes, Op. 9: No. 2 in E-Flat Major. And	Frédéric Chopin, Bri	Chopin: The Essentials	4:34	
+	Nocturnes, Op. 9: No. 2 in E-Flat Major. And	Frédéric Chopin, Bri	Chopin: Complete N	4:34	
+	Nocturnes, Op. 9: No. 2 in E-Flat Major	Frédéric Chopin, Fra	Chopin: 21 Nocturnes	4:23	
+	Nocturne Op. 9 No. 2	Frédéric Chopin, Olg	JUST THE BEST MU	5:02	
+	Nocturnes, Op. 9: No. 2 in E-Flat Major	Frédéric Chopin, Art	Chopin Nocturnes	4:31	
+	Nocturnes, Op. 9: No. 2 in E-Flat Major	Frédéric Chopin, Art	Chopin: Nocturnes	4:26	
+	Nocturnes, Op. 9: No. 2 in E-Flat Major	Frédéric Chopin, Art	50 Masterworks - Ar	4:28	
+	Nocturnes, Op. 9: No. 2 in E-Flat Major	Frédéric Chopin, Art	The Original Jacket	4:21	
+	Nocturnes, Op. 9: No. 2 in E-Flat Major	Frédéric Chopin, Ad	Classical Study Music	4:50	
+	Nocturnes. Op. 9: No. 2 in E-Flat Maior	Frédéric Chopin. Elia	Chopin: Notturno	4:30	

Musicians being puzzled

- Does music genre classification make sense?
- Do the datasets make sense?
- 'Horse systems', after Clever Hans

Bob Sturm

Bob Sturm. "A Simple Method to Determine if a Music Information Retrieval System is a "Horse"", IEEE Trans. Multimedia 16 (6), 1636-1644, 2014.

Clever Hans

So what is a 'horse' system?

- A "horse" is a system that is not actually addressing the problem it appears to be solving.
- A system is a "horse" only in relation to a specific problem.
- A "horse" for one problem may not be a "horse" for another
 - "Reproduce ground truth by XYZ"
 - "Reproduce ground truth by any means"

Bob Sturm. "A Simple Method to Determine if a Music Information Retrieval System is a "Horse", IEEE Trans. Multimedia 16 (6), 1636-1644, 2014.

How can we test whether a system is a 'horse'?

- Apply 'irrelevant transformations'
- See what your system actually will say
- cf. adversarial examples
- <u>https://github.com/cleverhans-lab/cleverhans</u>

irrelevant transformations in music genre recognition: https://www.youtube.com/watch?v=KFZH8gZMumU

Assessing something is off – even without a clear ground truth

ÍUDelf

Cynthia C. S. Liem and Chris Mostert, "Can't trust the feeling? How open data reveals unexpected behavior of high-level music descriptors", Proc. ISMIR 2020, <u>https://program.ismir2020.net/poster_2-10.html</u>

Meta-scientific trustworthiness analysis?

- Anyone can submit anything...so we don't know what the output should be?
- In software engineering and psychology, we saw 'testing' can go beyond 'known truths', exploiting known relationships.

Correlation between constructs

- Inspired by construct validity approaches in psychology
- Redundancy in constructs (e.g., multiple genre classifiers with overlapping labels)

Correlation between constructs

- genre_rosamerica
 classifier was 90.74 %
 accurate on rock.
- genre_tzanetakis classifier was 60 % accurate on rock.
- Pearson's *r* between the genre_rosamerica and genre_tzanetakis rock classifications in Acousticbrainz: -0.07

L)eli

	Classifier, label A	el A Classifier, label B	
	genre_rosamerica, cla	genre_tzanetakis, cla	.29
	genre_dortmund, rock	genre_rosamerica, roc	.24
	genre_dortmund, jazz	genre_rosamerica, jaz	.22
	genre_dortmund, pop	genre_rosamerica, pop	.11
	genre_dortmund, jazz	genre_tzanetakis, jaz	.08
	genre_rosamerica, pop	genre_tzanetakis, pop	.06
	genre_rosamerica, hip	genre_tzanetakis, hip	.05
	genre_rosamerica, jaz	genre_tzanetakis, jaz	.02
	genre_dortmund, blues	genre_tzanetakis, blu	.01
3	genre_dortmund, pop	genre_tzanetakis, pop	05
	genre_dortmund, rock	genre_tzanetakis, roc	06
	genre_rosamerica, roc	genre_tzanetakis, roc	07
	mood_aggressive, aggressive	<pre>mood_relaxed, not_relaxed</pre>	.59
	mood_acoustic, acoustic	<pre>mood_electronic, not_electronic</pre>	.58
	danceability, danceable	mood_party, party	.53
	mood_electronic, electronic	genre_dortmund, electronic	.48
	danceability, danceable	genre_rosamerica, dan	.33
	mood_happy, happy	mood_party, party	.20
	mood_happy, happy	mood_sad, not_sad	.13

Stability of resubmissions

- Inspired by derived oracles in software testing
- One would assume

TUDelf

 In terms of classifier outputs, not necessarily...

relevant

Netflix 2017

"What's more powerful: you telling me you would give five stars to the documentary about unrest in the Ukraine; that you'd give three stars to the latest Adam Sandler movie; or that you'd watch the Adam Sandler movie 10 times more frequently?" Yellin said. "What you do versus what you say you like are different things."

https://www.theverge.com/2017/3/16/14952434/netflix-five-star-ratings-goingaway-thumbs-up-down

irrelevant?

TUDelft

Relevant?

Trends over time

TUDelft

• KB Labs n-gram viewer

103

The champions

ŤUDelft

Felix Mendelssohn Bartholdy Franz Liszt and several others...

Being human in the age of Generative AI

The promise?

https://www.youtube.com/watch?v=YRb0XAnUpIk

Do we undervalue this?

TUDelft

While we already risked losing this?

• Archive Bookstore, London, March 16, 2019

And this?

ŤUDelft

- Acquired taste
- First experience negative, repeated exposure needed

Photo by <u>kiliweb</u> for Open Food Facts

What fed the enthusiasm?

Who decides and describes?

Whose values and interests?

 RESEARCH-ARTICLE
 OPEN ACCESS
 Im
 <thIm</th>
 Im
 Im
 <thIm</th>

Authors: Abeba Birhane, Pratyusha Kalluri, Dallas Card, William Agnew, Ravit Dotan, Michelle Bao Authors Info & Claims

"We annotate key features of papers which reveal their values: their justification for their choice of project, which attributes of their project they uplift, their consideration of potential negative consequences, and their institutional affiliations and funding sources. We find that few of the papers justify how their project connects to a societal need (15%) and far fewer discuss negative potential (1%). Through line-by-line content analysis, we identify 59 values that are uplifted in ML research, and, of these, we find that the papers most frequently justify and assess themselves based on Performance, Generalization, Quantitative evidence, Efficiency, Building on past work, and Novelty."

Global inequalities

ARTIFICIAL INTELLIGENCE

Artificial intelligence is creating a new colonial world order

An MIT Technology Review series investigates how AI is enriching a powerful few by dispossessing communities that have been dispossessed before.

> https://www.technologyreview.com/2022/04/19/104959 2/artificial-intelligence-colonialism/

Insights from museum practices

Huang & Liem, "Social Inclusion in Curated Contexts: Insights from Museum Practices", proc. ACM FAccT, 2022, <u>https://dl.acm.org/doi/abs/10.1145/3531146.3533095</u>.

TUDelft

Challenges of curation

- How can the selection process do justice to the original diversity in the broader collections?
- How can curation be performed in ways that respect, engage and include audiences beyond mainstream perspectives?

ICOM Museum definitions: 2007 → 2022

"A museum is a non-profit, permanent institution in the service of society and its development, open to the public, which acquires, conserves, researches, communicates and exhibits the tangible and intangible heritage of humanity and its environment for the purposes of education, study and enjoyment."

"A museum is a not-for-profit, permanent institution in the service of society that researches, collects, conserves, interprets and exhibits tangible and intangible heritage. Open to the public, accessible and inclusive, museums foster diversity and sustainability. They operate and communicate ethically, professionally and with the participation of communities, offering varied experiences for education, enjoyment, reflection and knowledge sharing."

Neutrality revisited & cultural humility

Simon Maris, ca. 1906

"East Indian type. Oriental girl sitting in an armchair" (1922)

"Isabella" (2020)

Words Matter: https://www.tropenmuseum.nl/en/about-tropenmuseum/words-matter-publication

Situational interpretation

- Items situated in context
- Active collaboration across museum services
- Response to target group's needs

Community participation

TUDelft

Kamen's Minivan, Object 0001 of Authentic Rotterdam Heritage Collection (Echt Rotterdams Erfgoed)

Working as intended? *Perceptions of success in AI Systems*

Cynthia C. S. Liem

c.c.s.liem@tudelft.nl

m

TUDelft

- @cynthiacsliem@akademienl.social
 - @informusiccs